PROGRAMME OUTCOMES of B.Sc (Life Sciences)

PO1	Gain academic expertise and critical thinking capability in the field of their study.
PO2	Analyze data meticulously and draw logical, physical inferences out of it.
PO3	Develop scientific temper and research aptitude through experiential learning.
PO4	Apply the concepts in key areas of science and allied subjects there by enhancing their employability and entrepreneurship skills.
PO5	Develop critical and analytical skills in the identification and resolution of problems within complex changing socio-economic environments.
PO6	Display skills in ethical analysis and decision-making with empathy and respect for core human values.
PO7	Become a responsible citizen who cultivates human values for the formation of an egalitarian society.
PO8	Ability to incorporate lifelong learning and commit to Professional Ethics

PROGRAMME SPECIFIC OUTCOMES OF B.Sc. BTBC

PSO1	Graduates will have a comprehensive understanding of the fundamental concepts in Life Sciences including chemistry.
PSO2	Students apply scientific principles to design, conduct experiments, analyze data to draw meaningful conclusions and able to collaborate with interdisciplinary subjects
PSO3	Students will develop employability and entrepreneur skills by integrating with philosophical Approach across allied sciences

COURSE OUTCOME

BOTANY SEMESTER I

1	Title of the Course: MICROBIAL DIVERSITY & LOWER PLANTS							
SEM-	Credits: 4 Course Code:BOT102T Year/Group: I BtBC HPV							
	Course Outcomes							
CO1	Recall plant diseases caused by Bacteria, Viruses							
CO2	Compare Classification, General Characters, Structure and reproduction of Algal species.							
CO3	Distinguish Structure and reproduction of Fungal species and their applications.							
CO4		To justify the Structure, reproduction, life cycle and systematic position of Bryophytes & Pteridophytes						

	Title of the Course: MICROBIAL DIVERSITY & LOWER PLANTS(PRACTICALS)							
SEM-	- Credits: Course Code:BOT102P Year/Group: I BtBC HPW: 2							
		Course	Outcomes					
CO1	Introduce students with various Algal, fungal, Bryophytes, Pteridophytes and lichens, classification, characteristics, reproduction and economic Importance.							
CO2	Identify various plant diseases, causal organisms and their control							

SEMESTER II

Title of the Course: GYMNOSPERMS, TAXONOMY OF ANGIOSPERMS & ECOLOGY							
SEM- II	- Credits : 4 Course Code:BOT202T Year/Group: I BtBC HPW: 4						
	Course Outcomes						
CO1	Relate life cycles of Gymnosperm plants.						
CO2	Compare Classifications of Plant systematics.						
CO3	CO3 Identify plants belonging to Taxonomic families.						
CO4	Discuss	s components of ecosystem	& their modifications.				

	Title of the Course: GYMNOSPERMS, TAXONOMY OF ANGIOSPERMS & ECOLOGY (PRACTICALS)							
SEM- II	SEM- Credits II Course Code:BOT202P Year/Group: I BtBC HPW: 3							
	Course Outcomes							
CO1	CO1 Perform and identify anatomical features of Gymnosperms							
CO2	CO2 Able to prepare Herbarium of Angiosperm plants.							

SEMESTER III

Ti	Title of the Course: PLANT ANATOMY AND EMBRYOLOGY						
SEM-III	Credits:	Course Code:BOT302T	Year/Group: II BtBC HPW: 4				
		Course Outco	mes				
CO1	Describe 1	Describe Meristems, root & shoot apices, tissues and tissue systems					
CO2	Distinguish anomalous secondary growth and wood structure in plant species						
CO3	Discuss Anther and Ovule structures, pollen –pistil interaction.						
CO4	Justify the development of seed, Endosperm and types of embryos.						

Title of the Course: PLANT ANATOMY AND EMBRYOLOGY (PRACTICALS)						
SEM-III	Credits:	Course Code: (BOT 302P)	Year/Group: II BtBC HPW: 2			
		Course Outcomes				
CO1	Observe the primary and secondary internal structure of monocots and dicots plants					
CO2	CO2 Learn to dissect pollen grains, viability, ovule types and developmental stages of embryo sac.					

SEMESTER III (SEC-2A)

	Title of the Course: Nursery and Gardening(SEC-2A)						
SEM-III	Credits: 2	Course Code:BOT SEC- 2A	Year/Group: II BtBC	HPW: 2			
Course Outcomes							
CO1	Understand the life cycle of plants- germination, growth, and reproduction.						
CO2	CO2 Learn the various methods of plant propagation.						

SEMESTER III (SEC-2B)

Title of the Course: BIOFERTILIZERS AND ORGANIC FARMING (SEC-2B)						
SEM-III	SEM-III Credits: Course Code: BOTSEC- Year/Group: II BtBC HPW: 2					
	Course Outcomes					
CO1	CO1 Exemplifying types of Bio fertilizers and Organic farming.					
CO2 Experimenting the use of Bio fertilizers on crop productivity.						

SEMESTER IV

Title o	Title of the Course: CELL BIOLOGY, GENETICS & PLANT PHYSIOLOGY						
SEM- IV	Credits: 4	Course Code:BOT402T	Year/Group: II BtBC	HPW: 4			
	Course Outcomes						
CO1	To recall ultrastructure of plant cell and cell division.						
CO2	To explain Mendelian inheritance, Linkage Crossing over, Gene mutation.						
CO3	CO3 To demonstrate Plant-water relations and enzyme activity.						
CO4	To Distin	nguish the process of photos	ynthesis, Respiration, Phytoh	normones.			

SEMESTER IV

Title of th	Title of the Course: CELL BIOLOGY, GENETICS & PLANT PHYSIOLOGY (PRACTICALS)						
SEM-IV	SEM-IV Credits: Course Code:BOT402P Year/Group: II BtBC HPW: 2						
	Course Outcomes						
CO1	CO1 Understand and explain Mendelian inheritance and their deviations						
CO2	CO2 Perform transpiration, plasmolysis, stomatal frequency and mineral deficiency experiments.						

Title of th	Title of the Course: MUSHROOM CULTURE TECHNOLOGY (SEC -4A)					
SEM-IV Credits: 2 Course Code: BOTSEC-4A Year/Group: II BtBC HPW: 2						
		Cours	se Outcomes			
CO1	Know the life cycle, and ecological requirements of various mushroom species.					
CO2	CO2 Learn a variety of techniques for cultivating different types of mushrooms					

,	Title of the Course: GREENHOUSE TECHNOLOGY SEC -4B)				
SEM-IV	Credits: 2	Course Code: BOTSEC-4B	Year/Group: II BtBC	HPW: 2	
	Course Outcomes				
CO1	Learn techniques for crop selection, planting, cultivation, and harvesting within greenhouse environments.				
CO2	Develop s	skills in operating and maint	aining greenhouse equipme	ent.	

SEMESTER V

	Title of the Course: Generic Elective (GE) Industrial Microbiology				
SEM-V	Credits:	Course Code:BOT502	Year/Group: III BtBC	HPW: 4	
		Course Outcom	es		
CO1	CO1 Utilizing microbes to manufacture a wide array of products by fermentation process in bioreactors.				
CO2		g fermentation techniques i am processing.	n various types of bioreacto	rs and	
CO3	Choosing and applying microorganisms of industrial interest				
CO4		nding the diversity microorg n of bio fertilizers.	ganisms present in water sou	irces and	

SEMESTER V

Tit	Title of the Course: BIODIVERSITY AND CONSERVATION				
SEM -V	Credits:	Course Code:BOT502(A)T	Year/Group: III BtBC	HPW: 4	
		Course Outcome	es		
CO1	Explain biodiversity at genetic, species, and ecosystem levels, and recognize its importance in maintaining ecological balance				
CO2		nd and implement conservationservation methods	on techniques, including in-	-situ and	
CO3	Gain knov	wledge of global and nationa	al biodiversity conservation	laws	
CO4	Apply critical thinking and problem-solving approaches to real-world biodiversity conservation challenges				
Title of the	Course:	BIODIVERSITY AND CO	NSERVATION (PRACTI	CALS)	
Sem-V	Credits:	Course Code:BOT502(A)P	Year/Group: III BtBC	HPW: 2	
		Course Outcome	es		
CO1	Explore and promote sustainable development practices that balance human needs with environmental protection				
CO2		public awareness campaign y-based conservation progra	ns, environmental education, ams	, and	

SEMESTER V

	Title of the Course: Economic Botany				
SEM-V	Credits:	Course Code:BOT502(B)T	Year/Group: III BtBC HPW: 4		
	Course Outcomes				
CO1	Learn the origin and diversity and domestication of cultivated plants				
CO2	Have awareness for economically important plants				
CO3	CO3 Re call Knowledge of plants and plant products which are used as a human diet.				
CO4	Describe t	he cultivation practices of c	il seeds, timber, and drug yielding plants.		

SEMESTER V

7	Title of the Course: Economic Botany(PRACTICALS)				
SEM-V	Credits:	Course Code:BOT502(B)P	Year/Group: III BtBC	HPW: 2	
	Course Outcomes				
CO1 Learn the economically important plants through specimens, sections and microchemical tests.					
CO2	Learn the	collection of plants through	herbarium preparation.		

SEMESTER V

	Title of the Course: SEED TECHNOLOGY				
SEM-V	Credits:	Course Code:BOT502(C)T	Year/Group: III BtBC HPW: 4		
		Course Outcomes			
CO1	Explain the fundamentals of seed biology, including seed development, structure, dormancy, and germination				
CO2	Understand techniques like cleaning, drying, grading, and packaging to enhance seed quality and longevity.				
CO3	Understand the production of hybrid seeds, their advantages, and the role of biotechnology in seed improvement				
CO4	_	ne role of seed technology in e, and conservation of genet	-		

Ti	Title of the Course: SEED TECHNOLOGY PRACTICALS					
SEM-V	Credits:	Course Code:BOT502(C)P	Year/Group: III BtBC	HPW: 2		
		Course Outcomes				
CO1	CO1 Learn appropriate methods for seed storage to maintain viability and prevent deterioration					
CO2	Develop h	nands-on experience in seed	testing, handling, and man	agement		

SEMESTER VI

	Title of the Course: PLANT MOLECULAR BIOLOGY					
SEM-VI	Credits:	Course Code:BOT602(A)T	Year/Group: III BtBC HPW: 4			
		Course Outcome	es			
CO1	Compare the structure of Nucleic acids and organelle DNA					
CO2	Explain the replication of DNA Central dogma and genetic code.					
CO3	Identify M	lechanism of Transcription	and RNA editing.			
CO4	Distinguis prokaryote	- ·	s, Transcriptional regulation in			

Title of	Title of the Course: PLANT MOLECULAR BIOLOGY (PRACTICALS)				
SEC-VI	Credits:	Course Code:BOT602(A)P	Year/Group: III BtBC	HPW: 2	
	Course Outcomes				
CO1	CO1 Estimate DNA by different techniques				
CO2	CO2 Understand and Categorize experimental methods of nucleic acids.				

SEMESTER VI

Title	Title of the Course: TISSUE CULTURE AND BIOTECHNOLOGY				
SEM-VI	Credits:	Course Code:BOT602(B)T	Year/Group: III BtBC H	PW: 4	
		Course Outcome	es		
CO1	Explain th	ne main techniques of in vitr	o culture of plant cells & tissue	es.	
CO2	Know the metabolite	•	roduction of plant secondary		
СОЗ	Have known in it	wledge of the basic concept	of gene cloning & enzymes in	volved	
CO4	Understan	nd the main techniques of ge	netic manipulation of plant org	ganisms	

SEM-VI	Credits:	Course Code:BOT602(B)P	Year/Group: III BtBC	HPW: 2
	Course Outcomes			
CO1	Explore th	ne isolation of plant DNA		
CO2	Learn to	preparation of plant tissue c	ulture medium	

SEMESTER VI

Title of the Course: ANALYTICAL TECHNIQUES IN PLANT SCIENCES						
SEM-VI	Credits: 4	Course Code:BOT602(C)T	Year/Group: III BtBC HPW: 4			
Course Outcomes						
CO1	Understand Imaging and related techniques					
CO2	Identify Cell fractionation, Radioisotopes and Spectrophotometry.					
CO3	Compare Chromatography, Electrophoresis and Mass spectrometry.					
CO4	Analyze data by various Biostatistical methods.					

Title of the Course: ANALYTICAL TECHNIQUES IN PLANT SCIENCES(PRACTICALS)						
SEM-VI	Credits:	Course Code:BOT602(C)P	Year/Group: III BtBC	HPW: 2		
Course Outcomes						
CO1	Demonstrate various analytical techniques.					
CO2	Prepare permanent slides by staining techniques.					